The Prism of the Acyclic Orientation Graph is Hamiltonian

نویسندگان

  • Gara Pruesse
  • Frank Ruskey
چکیده

Every connected simple graph G has an acyclic orientation. Define a graph AO(G) whose vertices are the acyclic orientations of G and whose edges join orientations that differ by reversing the direction of a single edge. It was known previously that AO(G) is connected but not necessarily Hamiltonian. However, Squire [3] proved that the square AO(G) is Hamiltonian. We prove the slightly stronger result that the prism AO(G)× e is Hamiltonian. If G is a mixed graph (some edges directed, but not necessarily all), then AO(G) can be defined as before. The graph AO(G) is again connected but we give examples showing that the prism is not necessarily Hamiltonian. ∗This material is based upon work supported by the National Science Foundation under Grant No. NSF OSR-9350540. †Research supported in part by the Natural Sciences and Engineering Research Council of Canada under Grant A3379.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Prism of the Acyclic Orientation Graph isHamiltonianGara

Every connected simple graph G has an acyclic orientation. Deene a graph AO(G) whose vertices are the acyclic orientations of G and whose edges join orientations that diier by reversing the direction of a single edge. It was known previously that AO(G) is connected but not necessarily Hamiltonian. However, Squire 3] proved that the square AO(G) 2 is Hamiltonian. We prove the slightly stronger r...

متن کامل

Gray Code Results for Acyclic Orientations

Given a graph G, the acyclic orientation graph of G, denoted AO(G), is the graph whose vertices are the acyclic orientations of G, and two acyclic orientations are joined by an edge in AO(G) iff they differ by the reversal of a single edge. A hamilton cycle in AO(G) gives a Gray code listing of the acyclic orientations of G. We prove that for certain graphs G, AO(G) is hamiltonian, and give exp...

متن کامل

A new approach to compute acyclic chromatic index of certain chemical structures

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerfu...

متن کامل

ar X iv : 1 20 7 . 71 84 v 1 [ cs . D M ] 3 1 Ju l 2 01 2 Set graphs . II . Complexity of set graph recognition and similar problems

A graph G is said to be a set graph if it admits an acyclic orientation that is also extensional, in the sense that the out-neighborhoods of its vertices are pairwise distinct. Equivalently, a set graph is the underlying graph of the digraph representation of a hereditarily finite set. In this paper, we continue the study of set graphs and related topics, focusing on computational complexity as...

متن کامل

Set graphs. II. Complexity of set graph recognition and similar problems

A graph G is said to be a set graph if it admits an acyclic orientation that is also extensional, in the sense that the out-neighborhoods of its vertices are pairwise distinct. Equivalently, a set graph is the underlying graph of the digraph representation of a hereditarily finite set. In this paper, we continue the study of set graphs and related topics, focusing on computational complexity as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 2  شماره 

صفحات  -

تاریخ انتشار 1995